Copyright Notice:

©2005 Wang Electro-Opto Corporation. Personal use of this material is permitted. However, reprinting/republishing of this material or reuse of any copyrighted component of this work in other works is disallowed.
A Critique and New Concept on Gain Bandwidth Limitation of Omnidirectional Antennas

Johnson J. H. Wang

Wang Electro-Opto Corporation
2140 Newmarket Parkway, Suite 110
Marietta, Georgia 30067
Tel: (770) 955-9311 Fax: (770) 984-9045
e-mail: jjhwang@weo.com

Presented in PIERS 2005

25 August 2005
Fractional Bandwidth Is Inadequate for Broadband Problems

• Electrical engineering (EE) *in the past*
 – deals with *narrowband* problems
 – uses fractional bandwidth (in %)

• Audio engineering
 – deals with *ultrawideband* problems
 – measures bandwidth in octaves
 – does not and cannot use fractional bandwidth

• EE is increasingly ultrawideband
 – fractional bandwidth not adequate
 – needs new measure for bandwidth
Various Definitions for Bandwidth

- **Fractional Bandwidth** B_f

 $$B_f \equiv \frac{\Delta F}{F_o} \equiv \frac{(F_H - F_L)}{F_o} \quad \text{(in \%)}$$

 $$= 2 \frac{(F_H - F_L)}{(F_H + F_L)} < 200\%$$

- **Octaval Bandwidth** B_o (a new definition for EE)

 $$B_o \equiv \frac{F_H}{F_L} \quad \text{(In unit like the SWR)}$$

- **Relation between** B_f **and** B_o

 $$B_f = 2 \frac{(B_o - 1)}{(B_o + 1)}$$
Octaval Bandwidth B_o, Fractional Bandwidth B_f, and Approximate Quality Factor Q_a
What Is the Bandwidth of an Antenna?

• Dependent on the performance criteria
 – gain (minimum peak gain, minimum gain in spatial coverage, etc.)
 – Pattern or directivity
 – maximum sidelobes
 – SWR, efficiency
 – system performance (diversity gain, etc.)
• Dependent on definition of bandwidth
 – Fractional bandwidth
 – Octaval bandwidth (NEW!)
Fractional or Octaval Bandwidth?

• Fractional bandwidth
 – Suitable for resonant antennas
 – NOT suitable for non-resonant antennas such as
 • Frequency-independent antennas
 • Broadband traveling-wave antennas

• Octaval bandwidth
 – Suitable for both resonant and non-resonant antennas
The Chu Theory on Gain Bandwidth of Antennas Is Too Narrow

- Zero dissipative loss assumption
- Single-port impedance
 - not characteristic of non-resonant antennas
 - Based on Q and fractional bandwidth
- Not suitable for non-resonant antennas
- $B_f \sim 1/(2 \, Q_a)$ is valid only for $Q_a > 4$
- Antenna performance criteria too narrow
A 1-10 GHz Mode-0 SMM Antenna

WEO Model SMM-1G10G-0-
An Omnidirectional Conformable TW (Traveling Wave) Antenna

- Planar TW surface S
- Matching structure
- TW
- Feed cable
- Ground plane
- z (Zenith)
- θ
Measured Gain of an Omnidirectional TW (Traveling Wave) Antenna

WEO Model SMM-1G10G-0-

Gain, dBi

Frequency, GHz

Copyright © 2005 by Wang Electro-Opto Corporation
Octaval Bandwidth of a Wang Omnidirectional Antenna

Bandwidth vs Minimum Gain Threshold for WEO Antenna SMM-1G10G-0-

Octaval Bandwidth (F_H/F_L) vs Minimum Antenna Gain, dBi
Bandwidth of This Antenna Exceeds the Limitation Imposed by Classical Theory?!

For the 1-10 GHz WEO model

- Theoretical limitation
 - \(ka = 2\pi \times 3/11.3 = 1.597 \) at 1 GHz
 - \(Q_{\text{exact}} = 0.869 \)
 - \(B_f = 1 / Q_{\text{exact}} = 115\% \)
 - \(B_O = (2 + B_f)/(2 - B_f) \)
 \[= 3.711 \quad \text{(computed based on } Q_{\text{exact}}) \]

- Measured bandwidth (1 dBi minimum gain)
 - \(B_f = 164\% \)
 - \(B_O = 10 \)
Fractional Bandwidth Limitation versus Antenna Size ka

Bandwidth B_f and Q vs ka

- $k = 2\pi/\lambda$
- a = radius of sphere enclosing antenna

$B_f \sim 1/Q$

Wang antenna (1-10 GHz SMM mode-0)

Q (McCLean, 1996)

Q_a (Chu, 1948)

Copyright © 2005 by Wang Electro-Opto Corporation
Bandwidth of Wang Antenna Is Beyond the Classical Theoretical Physical Limitation!

Octoval Bandwidth B_o and Q vs ka

$k = 2\pi/\lambda$
$a =$ radius of sphere enclosing antenna

$B_o = (2 + B_f)/(2 - B_f)$

$B_f \sim 1/Q$

Wang antenna (1-10 GHz SMM mode-0)

Q (McClean, 1996)

Q_a (Chu, 1948)

Copyright © 2005 by Wang Electro-Opto Corporation
Concluding Remarks

- Classical Chu theory on antenna bandwidth limitation is not applicable to broadband antennas.
- Limitation of antenna bandwidth
 - depending on the performance criteria
- The fractional bandwidth, and quality factor Q
 - inadequate for broadband antennas
- For broadband antennas
 - “Octaval Bandwidth” is a more appropriate and even necessary concept/terminology.